The control landing problem for an aircraft-type unmanned aerial vehicle (UAV) in the vertical plane is considered. In this paper we propose a discrete method of controlling a continuous object, called the method of optimized delta-transformations, which is based on the choice of the control parameters at each step of discretization, which allow minimizing the time duration of the transient process when deviating from the program trajectory, taking into account the restrictions imposed on the control signals. We also made a comparison with the classical method of control generation in the proportional-derivative control circuit. The goal of both methods is to compensate the deviation of the center of mass of the unmanned aerial vehicle from the program flight trajectory. Comparative results of the numerical simulation of the flight of an unmanned aerial vehicle at the landing stage with ideal and noisy measurements of the flight parameters are given.
Read full abstract