This paper considers a cognitive radio network where a secondary user (SU) coexists with a primary user (PU). The interference outage constraint is applied to protect the primary transmission. The power allocation problem to jointly maximize the ergodic capacity and minimize the outage probability of the SU, subject to the average transmit power constraint and the interference outage constraint, is studied. Suppose that the perfect knowledge of the instantaneous channel state information (CSI) of the interference link between the SU transmitter and the PU receiver is available at the SU, the optimal power allocation strategy is then proposed. Additionally, to manage more practical situations, we further assume only the interference link channel distribution is known and derive the corresponding optimal power allocation strategy. Extensive simulation results are given to verify the effectiveness of the proposed strategies. It is shown that the proposed strategies achieve high ergodic capacity and low outage probability simultaneously, whereas optimizing the ergodic capacity (or outage probability) only leads to much higher outage probability (or lower ergodic capacity). It is also shown that the SU performance is not degraded due to partial knowledge of the interference link CSI if tight transmit power constraint is applied.
Read full abstract