Abstract A number of nucleoside analogues are used successfully for the treatment of several cancers, and in particular leukemias and lymphomas, but these have distinct efficacies for different tumor types, and many malignancies do not respond to currently available nucleoside analogues or other forms of chemotherapy. A high throughput screen conducted in our lab to search for inhibitors of primary effusion lymphoma (PEL) identified the nucleoside analog 6-ethylthioinosine (6-ETI) as a potent and selective inhibitor of PEL, a largely incurable malignancy of B cell origin with plasmacytic differentiation. 6-ETI induced necrosis and ATP-depletion accompanied by S-phase arrest, DNA damage and inhibition of DNA synthesis. To understand 6-ETI mechanism of selectivity, RNA-seq analysis of in vitro generated drug-resistant PEL clones revealed inactivating mutations and loss of expression of adenosine kinase (ADK) as the mechanism of resistance. In vitro assays showed that 6-ETI is a pro-drug that gets phosphorylated and activated by adenosine kinase (ADK) into its active form. We found high ADK expression in PEL cell lines and primary specimens of PEL, multiple myeloma (MM) and plasmablastic lymphoma (PBL) patient samples. 6-ETI was effective at killing multiple myeloma cell lines, primary MM specimens, and had a remarkable anti-tumor response in a disseminated multiple myeloma and PEL xenograft mouse models. Thus, ADK expression can serve as a predictive biomarker to help identify patients that are most likely to respond to 6-ETI treatment. To further assess the spectrum of activity and sensitivity of 6-ETI, we examined ADK expression in other cancer subtypes and found that colorectal and pancreatic adenocarcinomas also overexpress ADK and are highly sensitive to killing by 6-ETI at the low nanomolar concentration. We also found high ADK expression in primary colon and pancreatic adenocarcinoma patient specimens. We compared 6-ETI to other FDA-approved purine analogs and failed to find other compounds with similar potency or selectivity profile. Herein, we report the identification of a novel purine analog, 6-ethylthioinosine, as an effective therapeutic with exquisite sensitivity to plasma cell malignancies and other ADK-expressing cancers. We have successfully used RNASeq-based “resistome” analysis to identify its mechanism of specificity and discovered a new biomarker that can potentially impact patient care and the treatment of some of the most aggressive tumors. Citation Format: Jouliana Sadek, Utthara Nayar, Jonathan Reichel, Jennifer Totonchy, Shizuko Sei, Robert Shoemaker, David Warren, Olivier Elemento, Kenneth Kaye, Ethel Cesarman. A novel nucleoside analog therapeutically active against plasma cell malignancies and other ADK-expressing cancers including colon and pancreatic adenocarcinomas [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5110. doi:10.1158/1538-7445.AM2017-5110
Read full abstract