This paper addresses the problem of stably recovering sparse or compressible signals from compressed sensing measurements that have undergone optimal nonuniform scalar quantization, i.e., minimizing the common <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{2}$</tex></formula> -norm distortion. Generally, this quantized compressed sensing (QCS) problem is solved by minimizing the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{1}$</tex></formula> -norm constrained by the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\ell _{2}$</tex></formula> -norm distortion. In such cases, remeasurement and quantization of the reconstructed signal do not necessarily match the initial observations, showing that the whole QCS model is not consistent. Our approach considers instead that quantization distortion more closely resembles heteroscedastic uniform noise, with variance depending on the observed quantization bin. Generalizing our previous work on uniform quantization, we show that for nonuniform quantizers described by the “compander” formalism, quantization distortion may be better characterized as having bounded weighted <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{p}$</tex></formula> -norm ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$p \geqslant 2$</tex></formula> ), for a particular weighting. We develop a new reconstruction approach, termed Generalized Basis Pursuit DeNoise (GBPDN), which minimizes the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{1}$</tex></formula> -norm of the signal to reconstruct constrained by this weighted <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{p}$</tex></formula> -norm fidelity. We prove that, for standard Gaussian sensing matrices and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$K$</tex> </formula> sparse or compressible signals in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \BBR ^{N}$</tex></formula> with at least <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\Omega ((K \log N/K)^{p/2})$</tex></formula> measurements, i.e., under strongly oversampled QCS scenario, GBPDN is <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{2}-\ell _{1}$</tex></formula> instance optimal and stable recovers all such sparse or compressible signals. The reconstruction error decreases as <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$O(2^{-B}/\sqrt {p+1})$</tex></formula> given a budget of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$B$</tex></formula> bits per measurement. This yields a reduction by a factor <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\sqrt {p+1}$</tex></formula> of the reconstruction error compared to the one produced by <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell _{2}$</tex></formula> -norm constrained decoders. We also propose an primal-dual proximal splitting scheme to solve the GBPDN program which is efficient for large-scale problems. Interestingly, extensive simulations testing the GBPDN effectiveness confirm the trend predicted by the theory, that the reconstruction error can indeed be reduced by increasing <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$p$</tex> </formula> , but this is achieved at a much less stringent oversampling regime than the one expected by the theoretical bounds. Besides the QCS scenario, we also show that GBPDN applies straightforwardly to the related case of CS measurements corrupted by heteroscedastic generalized Gaussian noise with provable reconstruction error reduction.
Read full abstract