AbstractThe tentacles of Aglantha have ciliary bands along the sides. Metachronal waves pass along these bands. The strong ciliary currents produced propel water past the tentacles, increasing the probability of prey capture. The ciliated cells are unusual in having many (up to about 500) cilia per cell, where most cnidarian ciliated cells have only one. The cells are also peculiar in containing numerous axonemes without membrane coverings, lying loose in the cytoplasm.Tentacles show independent, rhythmic, slow flexions in the oral direction and groups of tentacles show coordinated, slow flexions as part of a regularly repeated fishing cycle. In both cases, these slow, graded movements are mediated by a slowly conducting system, probably the network of small neurons present in the ectoderm, and are accompanied by ciliary arrests. Much faster, more powerful, coordinated contractions of the tentacles occur in the context of escape behaviour; these are mediated by giant axons which run down the tentacles and are also accompanied by ciliary arrest. Ciliary and muscle effectors evidently share a common motor innervation. Electron microscopy shows that the giant and non‐giant nerves both synapse with muscle cells. The latter are joined to the ciliated cells by gap junctions, and it is suggested that whenever the muscles are excited depolarizations spread to the ciliated cells through the gap junctions and cause ciliary arrests. Neuronal control of ciliary activity has not previously been reported in the Hydrozoa.
Read full abstract