Previous neuroimaging evidence highlighted the role of the insular and dorsal anterior cingulate cortex (dACC) in conflict monitoring and decision-making, thus supporting the translational implications of targeting these regions in neuro-stimulation treatments for clinical purposes. Recent advancements of targeting and modeling procedures for high-definition tDCS (HD-tDCS) provided methodological support for the stimulation of otherwise challenging targets, and a previous study confirmed that cathodal HD-tDCS of the dACC modulates executive control and decision-making metrics in healthy individuals. On the other hand, evidence on the effect of stimulating the insula is still needed. We used a modeling/targeting procedure to investigate the effect of stimulating the posterior insula on Flanker and gambling tasks assessing, respectively, executive control and both loss and risk aversion in decision-making. HD-tDCS was applied through 6 small electrodes delivering anodal, cathodal or sham stimulation for 20 min in a within-subject offline design with three separate sessions. Bayesian statistical analyses on Flanker conflict effect, as well as loss and risk aversion, provided moderate evidence for the null model (i.e., absence of HD-tDCS modulation). These findings suggest that further research on the effect of HD-tDCS on different regions is required to define reliable targets for clinical applications. While modeling and targeting procedures for neuromodulation in clinical research could lead to innovative protocols for stand-alone treatment, or possibly in combination with cognitive training, assessing the effectiveness of insula stimulation might require sensitive metrics other than those investigated here.
Read full abstract