This study investigated the use of polyvinyl alcohol (PVA) cryogels to immobilize microalgae for wastewater treatment. Chlorella sorokiniana was successfully entrapped in PVA cryogels via repeated freeze/thaw cycles. The nutrient removal efficiency of these cryogels was tested in a continuously stirred photobioreactor under varying conditions, both with and without the addition of an organic carbon source (sodium acetate). The presence of organic carbon significantly enhanced nutrient removal. Specifically, PVA cryogels with immobilized C. sorokiniana achieved 100% nitrogen removal and 97.2% phosphorus removal under mixotrophic conditions. Furthermore, the maximum nutrient removal capacities of the PVA cryogels were found to be 0.033 mg-N/cube·day for nitrogen and 0.0047 mg-P/cube·day for phosphorus. As the inorganic carbon (bicarbonate) concentration increased from 5 to 100 mg/L, the N/P ratio rose from 6 to 8, with a higher N/P ratio of 10 observed when nitrate nitrogen was used as the nitrogen source, compared to ammonia nitrogen, at 100 mg/L bicarbonate. This study offers an effective method for using microalgae immobilized in PVA cryogels for wastewater treatment. The findings highlight the potential for PVA cryogels to significantly improve nutrient removal efficiency, particularly in the presence of organic carbon sources, thereby enhancing bioreactor performance. High nitrogen and phosphorus removal efficiencies can help reduce eutrophication in water bodies, protect aquatic ecosystems, and enable nutrient recovery and reuse, supporting a circular economy in wastewater treatment practices.
Read full abstract