N-Lactoyl-amino acid derivatives (N-Lac-AAs) are of increasing interest as potential taste-active compounds. The complexity and diversity of N-Lac-AAs pose a significant challenge to the effective discovery of taste-active N-Lac-AAs. Therefore, a structure-based virtual screening was used to identify taste-active N-Lac-AAs. Virtual screening results showed that N-lactoyl-hydrophobic amino acids had a higher affinity for taste receptors, specifically N-l-Lac-l-Trp. And then, N-l-Lac-l-Trp was synthesized in yields of 22.3% by enzymatic synthesis in the presence of l-lactate and l-Trp, and its chemical structure was confirmed by MS/MS and one-dimensional (1D) and two-dimensional (2D) NMR. Sensory evaluation revealed that N-l-Lac-l-Trp had a significant taste-masking effect on quinine, d-salicin, caffeine, and l-Trp, particularly l-Trp and caffeine. N-l-Lac-l-Trp had a better masking effect on the higher concentration of bitter compounds. It reduced the bitterness of caffeine (500 mg/L) and l-Trp (1000 mg/L) by approximately 20 and 26%, respectively. The result of the ligand-receptor interaction and a quantum mechanical analysis showed that N-l-Lac-l-Trp increased the binding affinity to the bitter receptor mainly through hydrogen bonding and lowering the electrostatic potential.
Read full abstract