AbstractIn the mechanism of reaction of Grignard reagent formation for alkyl halides (RX), it is generally assumed that the alkyl radical, formed by the electron transfer from the metal to this halide, reacts rapidly with the paramagnetic MgX• species. The previous comparisons of aryl halides reactivity toward magnesium and their reactivity toward a cathode strongly suggested that MgX• species are not, for the aryl halides, compulsory to rationalise the observed facts. The aryl radicals formed by electron transfer from the metal to the aryl halide would undergo a rapid second electron transfer to yield carbanions transformed into RMgX by reaction with MgX2. In contrast, for the alkyl halides, the reduction of the rapidly formed alkyl radicals into carbanions has seldom been discussed as a possible fate for these radicals, the main discussed fates being dimerisation, disproportionation, hydrogen abstraction from the solvent, rearrangement or coupling with MgX• radicals. Two main differences distinguish the reactivity of alkyl halides from their aryl halides counterpart. First, the radical anions of aryl halides may have a given lifetime whereas electron transfer to alkyl halides is concerted with the cleavage of the molecule. Second, the aryl radicals display far stronger oxidising properties than the alkyl radicals. The counterpart of this property is that aryl carbanions display weaker reducing properties than the alkyl ones. In this report, putting in perspective Grignard reaction and the experimental results obtained with identical radical clocks in electrochemistry, we tentatively provide an answer to the question raised in the title. The comparison of electrochemical patterns of reactivity of selected alkyl halides and the evolutions of yields in the preparation of Grignard reagent suggest a new explanation for the lower yields generally observed when alkyl iodides are the starting substrates. It involves an autocatalytic reaction where carbanionic species formed from the alkyl radicals and diffusing away from the metal surface, transfer one electron to the alkyl halide; the result would be the creation of two radicals leading to an increased amount of by‐products. If the carbanionic mechanism were to be retained for the formation of alkyl Grignard reagent one would have to admit that the magnesium surface behaves as a cathode displaying high current densities reminiscent of microelectrodes. Copyright © 2006 John Wiley & Sons, Ltd.
Read full abstract