Published in last 50 years
Related Topics
Articles published on Premotor Circuitry
- Research Article
- 10.1146/annurev-vision-110423-030634
- Aug 5, 2025
- Annual review of vision science
- Julie Quinet + 3 more
We review the current state of our knowledge of the neural control of vergence and ocular accommodation in primates including humans. We first describe the critical need for these behaviors for viewing in a three-dimensional world. We then consider the sensory stimuli that drive vergence eye movements and lens accommodation and describe models of the sensorimotor transformations required to drive these motor systems. We discuss the interaction of vergence with saccades to produce high-speed shifts in gaze between objects at different distances and eccentricities. We also cover the normal development of these eye movements as well as the sequelae associated with their maldevelopment. In particular, we examine the neural substrates that produce vergence and lens accommodation, including motoneurons, immediate premotor circuitry, cerebellar and precerebellar regions, and cerebral cortical areas.
- Research Article
5
- 10.1007/978-3-031-07167-6_8
- Jan 1, 2022
- Advances in neurobiology
- Vatsala Thirumalai + 1 more
Beginning about half a century ago, the rules that determine how motor units are recruited during movement have been deduced. These classical experiments led to the formulation of the 'size principle'. It is now clear that motoneuronal size is not the only indicator of recruitment order. In fact, motoneuronal passive, active and synaptic conductances are carefully tuned to achieve sequential recruitment. More recent studies, over the last decade or so, show that the premotor circuitry is also functionally specialized and differentially recruited. Modular sub networks of interneurons and their post-synaptic motoneurons have been shown to drive movements with varying intensities. In addition, these modular networks are under the influence of neuromodulators, which are capable of acting upon multiple motor and premotor targets, thereby altering behavioral outcomes. We discuss the recruitment patterns of motoneurons in light of these new and exciting studies.
- Research Article
21
- 10.1523/jneurosci.1731-21.2021
- Dec 8, 2021
- The Journal of Neuroscience
- Mayu Takahashi + 3 more
Omnipause neurons (OPNs) in the nucleus raphe interpositus have tonic activity while the eyes are stationary ("fixation") but stop firing immediately before and during saccades. To locate the source of suppression, we analyzed synaptic inputs from the rostral and caudal superior colliculi (SCs) to OPNs by using intracellular recording and staining, and investigated pathways transmitting the inputs in anesthetized cats of both sexes. Electrophysiologically or morphologically identified OPNs received monosynaptic excitation from the rostral SCs with contralateral dominance, and received disynaptic inhibition from the caudal SCs with ipsilateral dominance. Cutting the tectoreticular tract transversely between the contralateral OPN and inhibitory burst neuron (IBN) regions eliminated inhibition from the caudal SCs, but not excitation from the rostral SCs in OPNs. In contrast, a midline section between IBN regions eliminated disynaptic inhibition in OPNs from the caudal SCs but did not affect the monosynaptic excitation from the rostral SCs. Stimulation of the contralateral IBN region evoked monosynaptic inhibition in OPNs, which was facilitated by preconditioning SC stimulation. Three-dimensional reconstruction of HRP-stained cells revealed that individual OPNs have axons that terminate in the opposite IBN area, while individual IBNs have axon collaterals to the opposite OPN area. These results show that there are differences in the neural circuit from the rostral and caudal SCs to the brainstem premotor circuitry and that IBNs suppress OPNs immediately before and during saccades. Thus, the IBNs, which are activated by caudal SC saccade neurons, shut down OPN firing and help to trigger saccades and suppress ("latch") OPN activity during saccades.SIGNIFICANCE STATEMENT Saccades are the fastest eye movements to redirect gaze to an object of interest and bring its image on the fovea for fixation. Burst neurons (BNs) and omnipause neurons (OPNs) which behave reciprocally in the brainstem, are important for saccade generation and fixation. This study investigated unsolved important questions about where these neurons receive command signals and how they interact for initiating saccades from visual fixation. The results show that the rostral superior colliculi (SCs) excite OPNs monosynaptically for fixation, whereas the caudal SCs monosynaptically excite inhibitory BNs, which then directly inhibit OPNs for the initiation of saccades. This inhibition from the caudal SCs may account for the omnipause behavior of OPNs for initiation and maintenance of saccades in all directions.
- Research Article
4
- 10.1007/s10827-021-00784-7
- Mar 12, 2021
- Journal of Computational Neuroscience
- Jeffrey D Schall + 1 more
The goal of this short review is to call attention to a yawning gap of knowledge that separates two processes essential for saccade production. On the one hand, knowledge about the saccade generation circuitry within the brainstem is detailed and precise - push-pull interactions between gaze-shifting and gaze-holding processes control the time of saccade initiation, which begins when omnipause neurons are inhibited and brainstem burst neurons are excited. On the other hand, knowledge about the cortical and subcortical premotor circuitry accomplishing saccade initiation has crystalized around the concept of stochastic accumulation - the accumulating activity of saccade neurons reaching a fixed value triggers a saccade. Here is the gap: we do not know how the reaching of a threshold by premotor neurons causes the critical pause and burst of brainstem neurons that initiates saccades. Why this problem matters and how it can be addressed will be discussed. Closing the gap would unify two rich but curiously disconnected empirical and theoretical domains.
- Research Article
34
- 10.7554/elife.53288
- May 19, 2020
- eLife
- Paul I Jaffe + 1 more
Acetylcholine is well-understood to enhance cortical sensory responses and perceptual sensitivity in aroused or attentive states. Yet little is known about cholinergic influences on motor cortical regions. Here we use the quantifiable nature of birdsong to investigate how acetylcholine modulates the cortical (pallial) premotor nucleus HVC and shapes vocal output. We found that dialyzing the cholinergic agonist carbachol into HVC increased the pitch, amplitude, tempo and stereotypy of song, similar to the natural invigoration of song that occurs when males direct their songs to females. These carbachol-induced effects were associated with increased neural activity in HVC and occurred independently of basal ganglia circuitry. Moreover, we discovered that the normal invigoration of female-directed song was also accompanied by increased HVC activity and was attenuated by blocking muscarinic acetylcholine receptors. These results indicate that, analogous to its influence on sensory systems, acetylcholine can act directly on cortical premotor circuitry to adaptively shape behavior.
- Research Article
35
- 10.1016/j.expneurol.2017.09.002
- Sep 14, 2017
- Experimental Neurology
- Loubna Khalki + 7 more
Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats
- Research Article
10
- 10.1523/jneurosci.0296-16.2016
- Jul 6, 2016
- Journal of Neuroscience
- H Song + 5 more
Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a "small-world" network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called "small-world" network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals.
- Research Article
24
- 10.1007/s00429-015-1039-2
- Apr 10, 2015
- Brain Structure and Function
- Martin O Bohlen + 2 more
The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad.
- Research Article
25
- 10.1089/neu.2014.3718
- Jan 27, 2015
- Journal of Neurotrauma
- Elisa Janine Gonzalez-Rothi + 7 more
Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer - pseudorabies virus - was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration.
- Research Article
47
- 10.1523/jneurosci.3698-14.2015
- Jan 7, 2015
- The Journal of Neuroscience
- Daniela Vallentin + 1 more
Sensory feedback is crucial for learning and performing many behaviors, but its role in the execution of complex motor sequences is poorly understood. To address this, we consider the forebrain nucleus HVC in the songbird, which contains the premotor circuitry for song production and receives multiple convergent sensory inputs. During singing, projection neurons within HVC exhibit precisely timed synaptic events that may represent the ongoing motor program or song-related sensory feedback. To distinguish between these possibilities, we recorded the membrane potential from identified HVC projection neurons in singing zebra finches. External auditory perturbations during song production did not affect synaptic inputs in these neurons. Furthermore, the systematic removal of three sensory feedback streams (auditory, proprioceptive, and vagal) did not alter the frequency or temporal precision of synaptic activity observed. These findings support a motor origin for song-related synaptic events and suggest an updated circuit model for generating behavioral sequences.
- Research Article
5
- 10.1002/dneu.22189
- Jun 4, 2014
- Developmental Neurobiology
- Teresa A Nick
Birdsong is a form of sensorimotor learning that involves a mirror-like system that activates with both song hearing and production. Early models of song learning, based on behavioral measures, identified key features of vocal plasticity, such as the requirements for memorization of a tutor song and auditory feedback during song practice. The concept of a comparator, which compares the memory of the tutor song to auditory feedback, featured prominently. Later models focused on linking anatomically-defined neural modules to behavioral concepts, such as the comparator. Exploiting the anatomical modularity of the songbird brain, localized lesions illuminated mechanisms of the neural song system. More recent models have integrated neuronal mechanisms identified in other systems with observations in songbirds. While these models explain multiple aspects of song learning, they must incorporate computational elements based on unknown biological mechanisms to bridge the motor-to-sensory delay and/or transform motor signals into the sensory domain. Here, I introduce the stabilizing critic hypothesis, which enables sensorimotor learning by (1) placing a purely sensory comparator afferent of the song system and (2) endowing song system disinhibitory interneuron networks with the capacity both to bridge the motor-sensory delay through prolonged bursting and to stabilize song segments selectively based on the comparator signal. These proposed networks stabilize an otherwise variable signal generated by both putative mirror neurons and a cortical-basal ganglia-thalamic loop. This stabilized signal then temporally converges with a matched premotor signal in the efferent song motor cortex, promoting spike-timing-dependent plasticity in the premotor circuitry and behavioral song learning.
- Research Article
111
- 10.7554/elife.02511
- Apr 30, 2014
- eLife
- Edward Stanek + 4 more
Feeding behaviors require intricately coordinated activation among the muscles of the jaw, tongue, and face, but the neural anatomical substrates underlying such coordination remain unclear. In this study, we investigate whether the premotor circuitry of jaw and tongue motoneurons contain elements for coordination. Using a modified monosynaptic rabies virus-based transsynaptic tracing strategy, we systematically mapped premotor neurons for the jaw-closing masseter muscle and the tongue-protruding genioglossus muscle. The maps revealed that the two groups of premotor neurons are distributed in regions implicated in rhythmogenesis, descending motor control, and sensory feedback. Importantly, we discovered several premotor connection configurations that are ideally suited for coordinating bilaterally symmetric jaw movements, and for enabling co-activation of specific jaw, tongue, and facial muscles. Our findings suggest that shared premotor neurons that form specific multi-target connections with selected motoneurons are a simple and general solution to the problem of orofacial coordination.DOI: http://dx.doi.org/10.7554/eLife.02511.001.
- Research Article
136
- 10.1016/j.neuron.2012.11.010
- Jan 1, 2013
- Neuron
- Jun Takatoh + 7 more
New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking
- Research Article
58
- 10.1523/jneurosci.1254-12.2012
- Oct 31, 2012
- The Journal of Neuroscience
- Timothy L Warren + 3 more
Variation in sequencing of actions occurs in many natural behaviors, yet how such variation is maintained is poorly understood. We investigated maintenance of sequence variation in adult Bengalese finch song, a learned skill with rendition-to-rendition variation in the sequencing of discrete syllables (i.e., syllable "b" might transition to "c" with 70% probability and to "d" with 30% probability). We found that probabilities of transitions ordinarily remain stable but could be modified by delivering aversive noise bursts following one transition (e.g., "b→c") but not the alternative (e.g., "b→d"). Such differential reinforcement induced gradual, adaptive decreases in probabilities of targeted transitions and compensatory increases in alternative transitions. Thus, the normal stability of transition probabilities does not reflect hardwired premotor circuitry. While all variable transitions could be modified by differential reinforcement, some were less readily modified than others; these were cases that exhibited more alternation between possible transitions than predicted by chance (i.e., "b→d " would tend to follow "b→c " and vice versa). These history-dependent transitions were less modifiable than more stochastic transitions. Similarly, highly stereotyped transitions (which are completely predictable) were not modifiable. This suggests that stochastically generated variability is crucial for sequence modification. Finally, we found that, when reinforcement ceased, birds gradually restored transition probabilities to their baseline values. Hence, the nervous system retains a representation of baseline probabilities and has the impetus to restore them. Together, our results indicate that variable sequencing in a motor skill can reflect an end point of learning that is stably maintained via continual self-monitoring.
- Research Article
87
- 10.1523/jneurosci.2493-12.2012
- Oct 17, 2012
- The Journal of Neuroscience
- Soroush G Sadeghi + 2 more
Sensory substitution is the term typically used in reference to sensory prosthetic devices designed to replace input from one defective modality with input from another modality. Such devices allow an alternative encoding of sensory information that is no longer directly provided by the defective modality in a purposeful and goal-directed manner. The behavioral recovery that follows complete vestibular loss is impressive and has long been thought to take advantage of a natural form of sensory substitution in which head motion information is no longer provided by vestibular inputs, but instead by extravestibular inputs such as proprioceptive and motor efference copy signals. Here we examined the neuronal correlates of this behavioral recovery after complete vestibular loss in alert behaving monkeys (Macaca mulatta). We show for the first time that extravestibular inputs substitute for the vestibular inputs to stabilize gaze at the level of single neurons in the vestibulo-ocular reflex premotor circuitry. The summed weighting of neck proprioceptive and efference copy information was sufficient to explain simultaneously observed behavioral improvements in gaze stability. Furthermore, by altering correspondence between intended and actual head movement we revealed a fourfold increase in the weight of neck motor efference copy signals consistent with the enhanced behavioral recovery observed when head movements are voluntary versus unexpected. Thus, together our results provide direct evidence that the substitution by extravestibular inputs in vestibular pathways provides a neural correlate for the improvements in gaze stability that are observed following the total loss of vestibular inputs.
- Research Article
6
- 10.1111/j.1748-1716.2012.02427.x
- Mar 19, 2012
- Acta Physiologica
- L Jutand + 7 more
The neural structures responsible for the coupling between ventilatory control and pulmonary gas exchange during exercise have not been fully identified. Suprapontine mechanisms have been hypothesized but not formally evidenced. Because the involvement of a premotor circuitry in the compensation of inspiratory mechanical loads has recently been described, we looked for its implication in exercise-induced hyperpnea. Electroencephalographical recordings were performed to identify inspiratory premotor potentials (iPPM) in eight physically fit normal men during cycling at 40 and 70% of their maximal oxygen consumption ((V)·O(2max) ). Relaxed pedalling (0 W) and voluntary sniff manoeuvres were used as negative and positive controls respectively. Voluntary sniffs were consistently associated with iPPMs. This was also the case with voluntarily augmented breathing at rest (in three subjects tested). During the exercise protocol, no respiratory-related activity was observed whilst performing bouts of relaxed pedalling. Exercise-induced hyperpnea was also not associated with iPPMs, except in one subject. We conclude that if there are cortical mechanisms involved in the ventilatory adaptation to exercise in physically fit humans, they are distinct from the premotor mechanisms activated by inspiratory load compensation.
- Research Article
4
- 10.16910/jemr.4.1.1
- Feb 3, 2011
- Journal of Eye Movement Research
- Zhong I Wang + 1 more
We expanded the original behavioral Ocular Motor System (OMS) model for Infantile Nystagmus Syndrome (INS) by incorporating common types of jerk waveforms within a unifying mechanism. Alexander’s law relationships were used to produce desired INS null positions and sharpness. At various gaze angles, these relationships influenced the IN slow-phase amplitudes differently, thereby mimicking the gaze-angle effects of INS patients. Transitions from pseudopendular with foveating saccades to jerk waveforms required replacing braking saccades with foveating fast phases and adding a resettable neural integrator in the pursuit pre-motor circuitry. The robust simulations of accurate OMS behavior in the presence of diverse INS waveforms demonstrate that they can all be generated by a loss of pursuit-system damping, supporting this hypothetical origin.
- Research Article
16
- 10.1016/j.brainres.2010.08.050
- Aug 24, 2010
- Brain Research
- A Van Der Hoorn + 2 more
Interruption of visually perceived forward motion in depth evokes a cortical activation shift from spatial to intentional motor regions
- Research Article
177
- 10.1523/jneurosci.5193-09.2010
- May 19, 2010
- The Journal of Neuroscience
- Peter J Schoonheim + 3 more
The optokinetic response (OKR) to a visual stimulus moving at constant velocity consists of a series of two alternating components, a slow phase, during which the eyes follow the stimulus, and a quick phase, which resets the eyes to begin a new response cycle. The quick phases of the OKR resemble the saccades observed during free viewing. It is unclear to what extent the premotor circuitry underlying these two types of jerky, conjugate eye movements is conserved among vertebrates. Zebrafish (Danio rerio) larvae, broadly expressing halorhodopsin (NpHR) or channelrhodopsin-2 (ChR2) in most neurons, were used to map the location of neurons involved in this behavior. By blocking activity in localized groups of NpHR-expressing neurons with an optic fiber positioned above the head of the fish and by systematically varying the site of photostimulation, we discovered that activity in a small hindbrain area in rhombomere 5 was necessary for saccades to occur. Unilateral block of activity at this site affected behavior in a direction-specific manner. Inhibition of the right side suppressed rightward saccades of both eyes, while leaving leftward saccades unaffected, and vice versa. Photostimulation of this area in ChR2-transgenic fish was sufficient to trigger saccades that were precisely locked to the light pulses. These extra saccades could be induced both during free viewing and during the OKR, and were distinct in their kinetics from eye movements elicited by stimulating the abducens motor neurons. Zebrafish double indemnity (didy) mutants were identified in a chemical mutagenesis screen based on a defect in sustaining saccades during OKR. Positional cloning, molecular analysis, and electrophysiology revealed that the didy mutation disrupts the voltage-gated sodium channel Scn1lab (Nav1.lb). ChR2 photostimulation of the putative hindbrain saccade generator was able to fully reconstitute saccades in the didy mutant. Our studies demonstrate that an optogenetic approach is useful for targeted loss-of-function and gain-of-function manipulations of neural circuitry underlying eye movements in zebrafish and that the saccade-generating circuit in this species shares many of its properties with that in mammals.
- Research Article
101
- 10.1523/jneurosci.1986-09.2009
- Sep 30, 2009
- The Journal of Neuroscience
- Brian J White + 4 more
Color is important for segmenting objects from backgrounds, which can in turn facilitate visual search in complex scenes. However, brain areas involved in orienting the eyes toward colored stimuli in our environment are not believed to have access to color information. Here, we show that neurons in the intermediate layers of the monkey superior colliculus (SC), a critical structure for the production of saccadic eye movements, can respond to isoluminant color stimuli with the same magnitude as a maximum contrast luminance stimulus. In contrast, neurons from the superficial SC layers showed little color-related activity. Crucially, visual onset latencies were 30-35 ms longer for color, implying that luminance and chrominance information reach the SC through distinct pathways and that the observed color-related activity is not the result of residual luminance signals. Furthermore, these differences in visual onset latency translated directly into differences in saccadic reaction time. The results demonstrate that the saccadic system can signal the presence of chromatic stimuli only one stage from the brainstem premotor circuitry that drives the eyes.