Orthognathic surgery corrects jaw deformities to improve aesthetics and functions. Due to the complexity of the craniomaxillofacial (CMF) anatomy, orthognathic surgery requires precise surgical planning, which involves predicting postoperative changes in facial appearance. To this end, most conventional methods involve simulation with biomechanical modeling methods, which are labor intensive and computationally expensive. Here we introduce a learning-based framework to speed up the simulation of postoperative facial appearances. Specifically, we introduce a facial shape change prediction network (FSC-Net) to learn the nonlinear mapping from bony shape changes to facial shape changes. FSC-Net is a point transform network weakly-supervised by paired preoperative and postoperative data without point-wise correspondence. In FSC-Net, a distance-guided shape loss places more emphasis on the jaw region. A local point constraint loss restricts point displacements to preserve the topology and smoothness of the surface mesh after point transformation. Evaluation results indicate that FSC-Net achieves 15× speedup with accuracy comparable to a state-of-the-art (SOTA) finite-element modeling (FEM) method.
Read full abstract