A detailed analysis of the precipitation pattern of the Arabian Peninsula and its temporal and spatial variability were investigated in connection with ENSO. Also, the variability of precipitable water and circulation characteristics was examined for a better understanding. The study was carried out utilizing TRMM rainfall, NOAA OLR, precipitable water, wind, and humidity data sets. It is evident that Northern Arabian Peninsula receives high amount of rainfall mainly during winter and early summer (November to April) in connection with the passage of mid tropospheric westerly troughs and Mediterranean low-pressure systems. But the precipitation pattern over the Southern Arabian Peninsula reveals that it is mainly during summer (May to October) due to the Arabian Sea branch of monsoon and moisture laden cross equatorial LLJ flow. Further, analysis was carried out to assess the influence of ENSO on the precipitation pattern. Thorough analysis was carried out on the circulation pattern using velocity potential in the lower troposphere to understand the features of variability on Hadley/Walker circulation in relation with organized convection. El Nino and La Nina have profound influence on the rainfall pattern in a different manner in the Northern and Southern Arabian Peninsula. Large-scale circulation pattern as derived from velocity potential indicates that shifting of the rising/sinking limb of Hadley/Walker circulation associated with the ENSO causes variability in precipitation.
Read full abstract