Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation, and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, with one of the phenotypes of the CAX1 mutant being altered tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1 and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here we used SXRF (Synchrotron X-Ray Fluorescence) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium, and manganese. Proteomic analysis on isolated Arabidopsis trichomes. showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.
Read full abstract