This paper describes an analysis of power supply rejection and noise improvement techniques for an envelope-tracking power amplifier. Although the envelope-tracking technique improves efficiency, its power supply rejection ratio is much lower than that of average power tracking or a fixed-supply power amplifier. In FDD systems with the envelope-tracking technique, the low power supply rejection ratio generates much output noise in the RX band and degrades the receiver’s sensitivity. An SM is designed by using a 130 nm CMOS process, and the chip die area is 2 × 2 mm2 with a 25-pin wafer-level chip-scale package. The designed SM achieved peak efficiencies of 78–83% for LTE signals with a 5.8 dB PAPR and various channel bandwidths. For the low-output-noise-supply modulator, noise reduction techniques using resonant-frequency tuning and a notch filter are employed, and the measured results show maximum 1.8/5/5.3/3.8/3 dB noise reduction in LTE bands B17/B5/B2/B3/B7, respectively.
Read full abstract