In this paper we present the results from a combined experimental, analytical, and computational penetration program. First, we conducted a series of depth-of-penetration experiments using 0.021 kg, 7.11 mm diameter, 71.12 mm long, vacuum-arc-remelted 4340 ogive-nose steel projectiles. These projectiles were launched with striking velocities between 0.5 and 1.3 km/s using a 20 mm powder gun into 254 mm diameter, 6061-T6511 aluminum targets with angles of obliquity of 15°, 30°, and 45°. Next, we employed the initial conditions obtained from the experiments with a new technique that we have developed to calculate permanent projectile deformation without erosion. With this technique we use an explicit, transient dynamic, finite element code to model the projectile and an analytical forcing function derived from the dynamic expansion of a spherical cavity (which accounts for compressibility, strain hardening, strain-rate sensitivity, and a finite boundary) to represent the target. Results from the simulations show the final projectile positions are in good agreement with the positions obtained from post-test radiographs.
Read full abstract