Ethnopharmacology relevancePicrorhiza scrophulariiflora Pennell, a well-known Chinese herb, has been traditionally utilized as an antioxidant and anti-inflammatory agent. One of its main bioactive components is Picroside II, a glycoside derivative. However, there is limited information on the effects of Picroside II on the activity of cytochrome P450 (CYP) enzymes nor on potential herb-drug interactions are rarely studied. Aim of the studyThe purpose of the study was to investigate the effects of Picroside II on the activity of cytochrome P450 enzymes in vitro and in vivo and its potential herb-drug interactions. Materials and methodsSpecific probe substrates were employed to assess the effect of Picroside II on the activity of P450 enzymes. The inhibitory effects of Picroside II on CYP enzymes were assayed both in human (i.e., 1A, 2C9, 2C19, 2D6, 2E1, and 3A) and rat (i.e., 1A, 2C6/11, 2D1, 2E1, and 3A) liver microsomes in vitro. The inductive effects were investigated in rats following oral gavage of 2.5 mg/kg and 10 mg/kg Picroside II. A specific Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) method was developed to determine the formation of specific metabolites. ResultsEnzyme inhibition results showed that Picroside II (0.5–200 μM) had no evident inhibitory effects on rat and human liver microsomes in vitro. Interestingly, the administration of multiple doses of 10 mg/kg Picroside II inhibited the activity of CYP2C6/11 by reducing the rate of formation of 4-hydroxydiclofenac and 4-hydroxymephenytoin, while Picroside II at 2.5 mg/kg increased the activity of CYP3A by promoting the formation of 1-hydroxymidazolam and 6-hydroxychlorzoxazone in rats. In addition, there were negligible effects on CYP1A, CYP2D1, and CYP2E1 in rats. ConclusionsThe results indicated that Picroside II modulated the activities of CYP enzymes and was involved in CYP2C and CYP3A medicated herb-drug interactions. Therefore, careful monitoring is necessary when Picroside II is used in combination with related conventional drugs.
Read full abstract