The analysis of tephra layers in maar lake sediments of the Eifel shows 14 well-visible tephra during the last glacial cycle from the Holocene to the Eemian (0–130,000 yr b2k). These tephra were analyzed for their petrographic composition, which allows us to connect several tephra to eruption sites. All tephra were dated by application of the ELSA-20 chronology, developed using the late Pleistocene infilled maar lake of Auel and the Holocene lake Holzmaar (0–60,000 yr b2k). We extend the ELSA-20 chronology with this paper for the millennia of 60,000–130,000 yr b2k (ELSA-23 chronology), which is based on the infilled maar lake records from Dehner, Hoher List, and Jungferweiher. The evaluation of the tephra from the entire last glacial cycle shows that all 14 tephra were close to interstadial warming of the North Atlantic sea surface temperatures. In particular, phreatomagmatic maar eruptions were systematically associated with Heinrich events or C-events. These events represent times of warming of the Southern Hemisphere, global sea level rise, and CO2 increase, which predate the abrupt interstadial warming events of the Northern Hemisphere. This synchroneity indicates a physical relationship between endogenic and exogenic processes. Changes in the lithospheric stress field in response to changes in continental ice loads have already been suggested as a potential candidate to explain the exogenic forcing of endogenic processes. The chronology of volcanic activity in the Eifel demonstrates that intraplate mantle plumes are also affected by the exogenic forcing of endogenic processes.
Read full abstract