Suitable tissue-engineered scaffolds to replace human anterior cruciate ligament (ACL) are well developed clinically as the development of tissue engineering. As water-soluble polymer compound, polyvinyl alcohol (PVA) has been wildly used as the materials to replace ACL. The aim of this study was to explore the feasibility of constructing tissue-engineered ACL by the copolymerization of PVA and collagen (PVA/COL). PVA and COL were copolymerized at a mass ratio of 3:1. The pore size and porosity of the scaffold were observed by electron microscope. The maximum tensile strength of the scaffold was determined by electronic tension machine. The cytotoxicity of the scaffold was evaluated by MTT assay. The morphology of ACL cells cultured on the surface of the scaffold was observed by inverted microscope. The degradation of the scaffold was recorded in the rabbit model. The average pore size of the polymer scaffold was 100 to 150 μm and the porosity was about 90%. The maximum tensile strength of the scaffold material was 8.10 ± 0.28 MPa. PVA/COL could promote the proliferation ability of 3T3 cells. ACL cells were successfully cultured on the surface of PVA/COL scaffold, with natural growth rate, differentiation, and proliferation. Twenty-four weeks after the plantation of scaffold, obvious degradations were observed in vivo. The model of in-vitro tissue-engineered ACL was successfully established by PVA/COL scaffolds.
Read full abstract