This study focuses waterproof-breathable fabric development by applying electrospun web of polyurethane (PU), PAN, and PES directly onto the substrate fabric. Advantages of textile fabrics of elastomeric nanofibrous membranes over gortex specimen are the mass production feasibility, high elastomeric properties, more body comfort parameters, and fabric production without holes and needle traces formation. In this work, we identified the PU nanofibrous membrane as the best and useful web for application in waterproof-breathable fabrics. Air permeability, water vapor transport rate, and resistance to water penetration average value for the prepared PU fibers web (sample of S1) were about 10 ml/s, 430 g/m2/24 h, 15 cm H2O. To improve waterproof-breathable characteristics of the membrane, the effects of electrospinning parameters on the fibers morphology and waterproof-breathable characteristics were investigated. PU concentration of 12% (w/w) and electrospinning voltage of 12 kV were identified as optimal conditions to reach uniform and fine PU nanofibers formation without any beads. Air permeability, water vapor transport rate, and resistance to water penetration average value for the final sample were recorded as about 2.5 ml/s, 840 g/m2/24 h, and 44 cm H2O, correspondingly. POLYM. ENG. SCI. 56:143–149, 2016. © 2015 Society of Plastics Engineers
Read full abstract