Thickening and reduplication of the tubular basement membrane has been reported as an early event in diabetic nephropathy. In the current study we have examined the polar requirements of proximal tubular cells for the D-glucose stimulated accumulation of fibronectin. We also examined the mechanism by which glucose led to accumulation of fibronectin, with particular emphasis on the polyol pathway. Incubation of confluent monolayers of LLC-PK1 cells grown on tissue culture inserts with 25 mM D-glucose on either their apical or basolateral aspect, led to fibronectin accumulation in the basolateral compartment. This reached statistical significance 24 h following apical addition of glucose (2.7 fold increase compared to 5 mM D-glucose, p = 0.007, n = 6), and 12 h after the basolateral addition of glucose (2.54 fold increase compared to 5 mM D-glucose, p = 0.02, n = 6). The increase in fibronectin concentration in response to glucose was inhibited by the aldose reductase inhibitor sorbinil. At a dose of 100&mgr;M sorbinil there was 59% inhibition of fibronectin accumulation in response to glucose, 48 h after the addition of the inhibitor (4.76 +/- 1.4 vs 11.53 +/- 1.41, mean +/- SD, p = 0.01, n = 3). Exposure of cells to glucose at either their apical or basolateral aspect lead to accumulation of intracellular glucose and polyol pathway activation, as assessed by sorbitol accumulation. Accumulation of intracellular glucose and hence subsequent polyol pathway activation occurred independently of transport of glucose by either apical sodium linked glucose transporter (SLGT) or basolateral GLUT 1. The data demonstrate that fibronectin generation in response to glucose was non-polar in terms application of glucose, but polar in terms of fibronectin accumulation. Furthermore modulation of fibronectin was mediated by polyol pathway activation, and more specifically related to the metabolism of sorbitol to fructose.
Read full abstract