A tissue kallikrein cDNA was identified by direct immunological screening with affinity-purified anti-rat tissue kallikrein antibody from a rat submandibular cDNA library constructed with the expression vector pUC8. Sequence analysis of the kallikrein cDNA revealed an encoded protein 97% homologous to the partial amino acid sequence of rat submandibular kallikrein. This cDNA was used to hybrid-select kallikrein-specific RNA from submandibular gland. Translation of the hybrid-selected RNA in a cell-free assay system resulted in the production of a 37 kDa peptide representing the preproenzyme. In addition, hybrid-selection of RNA under less stringent conditions showed cross-hybridization with other submandibular gland mRNA species. In correlation with these results, analysis of rat genomic DNA showed extensive hybridization, suggesting a family of closely related kallikrein-like genes. Consequently, a Charon 4A rat genomic library was screened for kallikrein genes by hybridization with rat tissue kallikrein cDNA. Thirty-four clones were isolated and found to be highly homologous by hybridization and restriction enzymes analyses. Fourteen unique clones were identified by restriction enzyme site polymorphisms within DNA segments which hybridized to the kallikrein cDNA probe and it was estimated that at least 17 different kallikrein-like genes are present in the rat. Sequence and structural analysis of one of the genomic clones revealed a gene structure similar to that of other serine proteinases. Comparison of the partially sequenced exon regions of the gene with the sequence of rat tissue kallikrein cDNA reveals 89% identity when aligned for the greatest homology. However, the genomic sequence predicts termination codons in all three translational reading frames, implying that this gene is nonfunctional, i.e., a pseudogene. Comparison of the rat genomic sequence to a kallikrein-like gene from the mouse reveals extensive preservation of exons, less identity within introns and no significant homology between extragenic regions.
Read full abstract