Glucose is a key biomarker of diabetes, and effective glucose monitoring methods are crucial to the prevention and management of diabetes. Therefore, in this paper, Fe3O4/DEX/PDA@Au (Raman reporters) @Au nanocomposites were synthetized that with DTNB (5,5′-dithiobis(2-nitrobenzoic)), MMTA (2-mercapto-4-methyl-5-thiazole acetic acid), MBA (4-mercaptobenzoic acid) and 4-Mpy(4-Mercaptopyridine) were used separately as Raman reporters. Fe3O4 and PDA (Polymerized dopamine) could supply more high surface area of active sites and high SERS (Surface-Enhanced Raman Scattering) substrate, which has high stability and reproducibility. Dextran coating is an effective way to prepare biocompatible materials TEM, XRD, TG and VSM were used to analyze the size, morphology and magnetic properties of the nanocomposites. Fe3O4/DEX/PDA@Au(Raman reporters)@Au that integrates a multi-hotspot structure and magnetic separation techniques were studied the enhancement effect of Raman spectra, and glucose solutions with different concentrations were tested. Furthermore, the optimal Fe3O4/DEX/PDA@Au(Raman reporters)@Au nanocomposites were supplied as SERS substrates for detection of glucose accurately and quickly in sweat. SERS signal intensity is linearly correlated with glucose concentration within the measurement range of 5 × 10-3 to 10 mM, and the minimum detectable concentration is 5 µM. The Fe3O4/DEX/PDA@Au(Raman reporters)@Au nanocomposites exhibit high reliability, specificity and repeatability of the strategy were then verified by practical detection of sweat.
Read full abstract