AbstractThe potential applications of carbon black are expected to grow as science and technology improve offering up new possibilities for innovation throughout disciplines included in the field of energy storage. The present work shows the influence of carbon black to improve the ionic conductivity of the polymer electrolyte. The synthesis of polyethylene oxide: ammonium iodide based polymer electrolyte incorporated with carbon black varying from 0.01 to 0.06 wt% with respect to PEO: NH4I system by solution casting method. Different characterizations like polarized optical microscopy (POM), impedance spectroscopy, and ionic transference number (tion) are studied in detail. The maximum ionic conductivity is achieved at 0.05 wt% carbon black shows 1.20 × 10−5 S cm−1 at ambient temperature. In accordance with POM data, the amorphous region has increased whereas the crystalline region has shrunk which further indicated the increase in ionic conductivity. The value of (tion) is calculated to be 0.97 which shows the system is ionic in nature. PEO based polymer electrolyte doped carbon black can be used for the fabrication of energy storage devices.
Read full abstract