Off-target drift from aerial pesticide applications in croplands can be a major source of pesticide exposure to pollinators. Pesticide adjuvants (PAs) are added to pesticides but can be as toxic as pesticides’ active ingredients. Ongoing experiments have identified sodium alginate (SA) as a drift-reducing PA less toxic to honeybees. Hence, SA and fenugreek polymer (FP) have been tested as drift-reducing PAs for aerial applications using the Remotely Piloted Aerial Application System (RPAAS). Two spray experiments were carried out in the field: (i) water only (W) and (ii) water and adjuvant (WA). Droplet spectrum and on-target coverage were collected using a VisiSize P15 image analyzer and kromekote cards, respectively. The drift reduction potentials (DRPs) of the adjuvants were analyzed based on droplet size (diameters of 10%, 50%, and 90% volume) and the proportion of driftable volume with droplets < 200 µm. Compared to the W only, the W-A treatment produced larger droplets, suggesting the presence of DRP. There were 14.5%, 8.3% to 14.4%, and 2.3% to 7.7% driftable fines in the W, WA (SA), and WA (FP) treatments, respectively. The FP treatment improved the on-target coverage (3.0% to 3.1%) compared to water (2.7%). Our results indicate that SA and FP have the potential to mitigate off-target drift and protect pollinator health.
Read full abstract