The significant increase in hazardous waste generation in Australia has led to the discussion over the incorporation of artificial intelligence into the hazardous waste management system. Recent studies explored the potential applications of artificial intelligence in various processes of managing waste. However, no study has examined the use of text mining in the hazardous waste management sector for the purpose of informing policymakers. This study developed a living review framework which applied supervised text classification and text mining techniques to extract knowledge using the domain literature data between 2022 and 2023. The framework employed statistical classification models trained using iterative training and the best model XGBoost achieved an F1 score of 0.87. Using a small set of 126 manually labelled global articles, XGBoost automatically predicted the labels of 678 Australian articles with high confidence. Then, keyword extraction and unsupervised topic modelling with Latent Dirichlet Allocation (LDA) were performed. Results indicated that there were 2 main research themes in Australian literature: (1) the key waste streams and (2) the resource recovery and recycling of waste. The implication of this framework would benefit the policymakers, researchers, and hazardous waste management organisations by serving as a real time guideline of the current key waste streams and research themes in the literature which allow robust knowledge to be applied to waste management and highlight where the gap in research remains.
Read full abstract