The resistant and aggressive nature of triple-negative breast cancer (TNBC) renders it mostly incurable even following extensive multimodal treatment. Therefore, more studies are required to understand the underlying molecular mechanisms of its pathogenesis. SIRT1 is a class III histone deacetylase NAD+-dependent enzyme that is interlinked in tumor progression, apoptosis, metastasis, and other mechanisms of tumorigenesis, while DNA polymerase delta 1 (POLD1) functions as a gene coding for p125, which plays an important role in genome stability and DNA replication. We aimed to investigate the downstream signaling pathway of EX-527, a potent and selective SIRT1 inhibitor, in MDA-MB-231 breast cancer cell lines, and the crosstalk between SIRT1 and POLD1, which is essential for the activities of polymerase δ. The antiproliferative and apoptotic effects of EX-527 on MDA-MB-231 cells were assessed by MTT and annexin V/PI double staining assays. Migration and invasion activity of MDA-MB-231 cells were assessed by wound-healing scratch and transwell assays. Protein expressions were examined using Western Blot analysis. MDA-MB-231 cells treatment with IC50 values of 45.3μM EX-527 significantly suppressed cell proliferation and induced apoptosis by down-regulating SIRT1. Also, it significantly repressed migration and invasion of MDA-MB-231 cells as evaluated by wound healing and transwell invasion assays. Western blot results showed that decreased expression of SIRT1 is positively correlated with expression of p53 along with down-regulating POLD1. SIRT1 could have an oncogenic role in breast cancer development and progression via activating POLD1. These conclusions present new insights into the underlying mechanisms of TNBC.
Read full abstract