We prove existence of minimizers for the multiple integral $\int$Ω$\l(u(x),\rho_1(x,u(x)) $∇$u(x)) \rho_2(x,u(x)) dx $W1,1u∂(Ω),(*) where Ω$\subset\R^d$ is open bounded, $u:$Ω$\toR$ is in the Sobolev space u∂($*$)+W1,10(Ω), with boundary data $u_$∂$(\cdot)\in$W1,1(Ω)$\cap C^{0}$(Ω); and $\l:R$Χ$R^d\to[0,\infty]$ is superlinear $L\oxB$-measurable with $\rho_1(\cdot,\cdot),\rho_2(\cdot,\cdot)\in C^{0}($ΩΧ$R)$ both $>0$. One main feature of our result is the unusually weak assumption on the lagrangian: l**$(\cdot,\cdot)$ only has to be $lsc$ at $(\cdot,0)$, i.e. at zero gradient. Here l**$(s,\cdot)$ denotes the convex-closed hull of $\l(s,\cdot)$. We also treat the nonconvex case $\l(\cdot,\cdot)\ne$l**$(\cdot,\cdot)$, whenever a well-behaved relaxed minimizer is a priori known. Another main feature is that $\l(s,\xi)=\infty$ is freely allowed, even at zero gradient, so that (*) may be seen as the variational reformulation of optimal control problems involving implicit first-order nonsmooth scalar partial differential inclusions under state and gradient pointwise constraints. The general case $\int$Ω$L(x,u(x),$∇$u(x))$ is also treated, though with less natural hypotheses, but still allowing $L(x,\cdot,\xi)$ non-$lsc$ for $\xi\ne0$.
Read full abstract