Nickel oxide (NiO) thin films are prepared by plasma-enhanced atomic layer deposition using nickelocene (NiCp2) and oxygen (O2) precursors. The effects of process parameters on the growth rate of NiO film are investigated, including deposition temperature, NiCp2 pulse time, and O2 plasma pulse time. In terms of deposition temperatures between 225 and 275 °C, a stable growth rate of ∼0.17 Å/cycle is obtained, meanwhile, the deposited films contain Ni(II)−O, Ni(III)−O, Ni(II)−OH, C−C bonds and metallic Ni atoms, and exhibit a smooth surface with root-mean-square roughness of ≤0.37 nm. As the deposition temperature increases from 150 to 350 °C, the deposited NiO film changes from an amorphous state to a NiO (200) orientation-dominated texture and further to NiO (111) and (200) orientations concomitant polycrystalline one; at the same time, the transmittance of the film shows a decline tendency, and the optical band gap decreases from 3.69 to 3.48 eV. Furthermore, it is found that the deposited NiO film behaves like a dielectric rather than a semiconductor, and for the NiO film deposited at 250 °C, a dielectric constant of 16.7 is demonstrated together with a film composition of 51.6% Ni, 40% O and 8.4% C.
Read full abstract