Plant pathogens secrete numerous effectors to promote host infection, but whether any of these toxic proteins undergoes phase separation to manipulate plant defence and how the host copes with this event remain elusive. Here we show that the effector FolSvp2, which is secreted from the fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), translocates a tomato iron-sulfur protein (SlISP) from plastids into effector condensates in planta via phase separation. Relocation of SlISP attenuates plant reactive oxygen species production and thus facilitates Fol invasion. The action of FolSvp2 also requires K205 acetylation that prevents ubiquitination-dependent degradation of this protein in both Fol and plant cells. However, tomato has evolved a defence protein, SlPR1. Apoplastic SlPR1 physically interacts with and inhibits FolSvp2 entry into host cells and, consequently, abolishes its deleterious effect. These findings reveal a previously unknown function of PR1 in countering a new mode of effector action.
Read full abstract