We analyzed a dose escalation of 36.25 Gy to the entire prostate and a dose increment up to 40 Gy with 1.25 Gy increments to intraprostatic lesion (IPL) using simultaneous integrated boost (SIB) in five fractions. Eighteen low- and intermediate-risk prostate cancer patients treated with 1.5T MR-Linac were retrospectively evaluated. The same planning computed tomography (CT) images generated four plans: no SIB, 37.5 Gy SIB, 38.75 Gy SIB, and 40 Gy SIB. In four plans, planning target volume (PTV) doses, organ at risk (OAR) doses, and PTV-SIB homogeneity index (HI), gradient index (GI) and conformity index (CI) were compared. All plans met the criteria for PTV and PTV-SIB coverage. PTV 40 Gy plan has higher maximum PTV and PTV-SIB doses than other plans. The PTV HI was significantly higher in the SIB 40 Gy plan (0.135 ± 0.007) compared to SIB 38.75 Gy plan (0.099 ± 0.007; p = 0.001), SIB 37.5 Gy (0.067 ± 0.008; p < 0.001), and no SIB plan (0.049 ± 0.010; p < 0.001), while there were no significant differences in HI, GI and CI for PTV-SIB between three plans. Four rectum and bladder plans had similar dosimetric parameters. The urethra D5 was significantly higher in SIB 40 Gy plan compared to no SIB plan (37.7 ± 1.1 Gy vs. 37.0 ± 0.7 Gy; p = 0.009) and SIB 37.5 Gy plan (36.9 ± 0.8 Gy; p = 0.008). There was no significant difference in monitor units between the four consecutive plans. Ultra-hypofractionated dose escalation to IPL up to 40 Gy in 5 fractions with a 1.5-T MR-linac is dosimetrically feasible, potentially paving the way for clinical trials.
Read full abstract