ABSTRACT Determining the precise ages of young (tens to a few hundred Myr) kinematic (‘moving’) groups is important for placing star, protoplanetary disc, and planet observations on an evolutionary timeline. The nearby ∼25 Myr-old β Pictoris Moving Group (BPMG) is an important benchmark for studying stars and planetary systems at the end of the primordial disc phase. Gaia DR3 astrometry and photometry, combined with ground-based observations and more sophisticated stellar models, permit a systematic re-evaluation of BPMG membership and age. We combined Gaia astrometry with previously published radial velocities to evaluate moving group membership in a Bayesian framework. To minimize the effect of unresolved stellar multiplicity on age estimates, we identified and excluded multistar systems using Gaia astrometry, ground-based adaptive optics imaging, and multi-epoch radial velocities, as well as literature identifications. We estimated age using isochrone and lithium-depletion-boundary fitting with models that account for the effect of magnetic activity and spots on young, rapidly rotating stars. We find that age estimates are highly model-dependent; Dartmouth magnetic models with ages of 23 ± 8 and 33$^{+9}_{-11}$ Myr provide best fits to the lithium depletion boundary and Gaia MG versus BP–RP colour–magnitude diagram, respectively, whereas a Dartmouth standard model with an age of 11$^{+4}_{-3}$ Myr provides a best fit to the 2-Micron All-Sky Survey-Gaia$M_{K_S}$ versus BP–RP colour–magnitude diagram.
Read full abstract