The distribution and mechanisms of photosynthetically dissolved organic carbon (PDOC) released by marine phytoplankton are frequently neglected and inadequately understood because most studies on carbon sequestration capacity have focused on photosynthetic particulate organic carbon. In this study, percentage extracellular release (PER) and its environmental influencing factors were investigated for 10 cruises in the Taiwan Strait during 2006–2023. The results indicated that the PER increased horizontally from the nearshore to the off-shelf and vertically from the surface to the bottom within the euphotic zone. PER tends to be low in eutrophic waters such as upwellings and estuaries and high in oligotrophic waters. The study revealed that the average contribution of PDOC to total primary productivity (TPP) in the Taiwan Strait could reach 18.2 ± 11.7%, which is similar to the previously estimated global oceanic values. PDOC production satisfied approximately 25% the carbon requirements of heterotropic bacteria (HB). A detailed analysis of the PER combined with model simulations proved that the distribution of the PER in the Taiwan Strait was caused by the joint contribution of irradiance, size-fractionated phytoplankton, and nutrient stoichiometry. Our results contradict the view that the PER is a constant factor that is unaffected by TPP. However, there was a significant negative correlation between the PER and TPP. The PDOC was always lower than the bacterial carbon demand for a broad range of bacterial growth efficiencies, suggesting a weak coupling between phytoplankton exudation and bacterial metabolism. This challenges the idea that there is a well-coupled relationship between bacteria and phytoplankton present on the continental shelf. These findings indicate significant discrepancies in PDOC mechanisms and the quantitative importance of nearshore eutrophic and off-shelf oligotrophic environments. Consequently, it is unwise to use uniform PERs without differentiation under trophic conditions when reevaluating and appraising marine carbon fixation.
Read full abstract