Due to the increasing demand for robust network cybersecurity, future communication technologies must consider security as a mandatory design feature. However, existing physical layer security techniques can be excessively complex and too expensive to support resource-constrained devices in heterogeneous access networks with high connection densities. To address this challenge, a physical layer security technique employing chaotic digital filters (CDFs) with private security keys is proposed and experimentally validated, for the first time, in a 12 Gbit/s intensity modulation and direct detection optical system with a 25 km standard single-mode fiber. Noise-like private security key-based CDFs have security key-dependent changes in amplitude and phase frequency response, with permutation entropies of >0.99, thus achieving data-assisted tri-level encryption by directly distorting the data signals, inducing interferences between data signals, and also intensifying the interferences via illegal detections. As CDFs are digitally integrable and offer features of “security-by-design,” “openness-by-design,” and “dynamic security at the traffic level,” the proposed technique facilitates an open and interoperable security solution with the utmost security for heterogeneous access networks.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
145 Articles
Published in last 50 years
Articles published on Physical Layer Security Techniques
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
140 Search results
Sort by Recency