Leaf carbon isotope composition (δ13C) provides an integrative record on the carbon and water balance of plants over long periods. Photosynthetic ability and hydraulic traits which are highly associated with stomatal behavior could affect leaf δ13C. Association between photosynthetic ability and leaf δ13C has been examined, however, how hydraulic traits influence leaf δ13C has not been fully understood. To fill this gap, we investigated the variations in leaf δ13C among 2591 woody species (547 shrub and 2044 tree species), and analyzed the link of leaf δ13C with leaf photosynthetic and xylem hydraulic traits. Our result showed that leaf δ13C was positively correlated to leaf photosynthetic ability and capacity. For hydraulic traits, leaf δ13C was negatively related to hydraulic conductivity (Ks), xylem pressure inducing 50 % loss of hydraulic conductivity (P50) and vessel diameter (Vdia). Associations of leaf δ13C with xylem hydraulic traits indicate woody species with stronger hydraulic safety discriminated less against 13C, while woody species with higher hydraulic efficiency had more negative leaf δ13C. Shrub species, which showed a lower Vdia and P50, had a significant less negative leaf δ13C than tree species. Furthermore, woody species inhabiting in dry regions discriminated less against 13C than those growing in humid regions. Moreover, leaf δ13C displayed a low phylogenetic signal based on Blomberg's K statistic. Overall, woody species with a higher leaf photosynthetic ability or stronger hydraulic safety system discriminated less against 13C and adopt the provident water use strategy.
Read full abstract