The dependence of the change in the components of the inverse permittivity tensor of a cubic photorefractive Bi12SiO20 crystal on the direction of the wave vector of holographic grating in the crystal coordinate system has been studied. It is shown that, when recording a phase hologram, the largest change in the refractive index of Bi12SiO20 crystal is attained when the holographic grating wave vector is oriented along symmetrically equivalent 111 directions. The maximum possible modulation amplitude of the refractive index of a holographic grating with the wave vector oriented along the 110 directions is found to exceed that in the case of orientation along the 100 directions. The components of the inverse permittivity tensor of Bi12SiO20 crystal were calculated taking into account that a phase hologram is recorded under linear electro-optic, photoelastic, and inverse piezoelectric effects.
Read full abstract