A series of star- and cone-shaped dendritic multiporphyrin arrays, (nPZn)4PFB and (nPZn)1PFB, respectively, that contain energy-donating dendritic zinc porphyrin (PZn) wedges of different numbers (n = 1, 3, and 7) of the PZn units, attached to an energy-accepting free-base porphyrin (PFB) core, were synthesized by a convergent growth approach. For the cone-shaped series ((nPZn)1PFB), the efficiency of energy transfer (phi ENT) from the photoexcited PZn units to the focal PFB core, as evaluated from the fluorescence lifetimes of the PZn units, considerably decreased as the generation number increased: (1PZn)1PFB (86%), (3PZn)1PFB (66%), and (7PZn)1PFB (19%). In sharp contrast, the star-shaped series ((nPZn)4PFB) all showed high phi ENT values: (1PZn)4PFB (87%), (3PZn)4PFB (80%), and (7PZn)4PFB (71%). Energy transfer efficiencies of (3PZn)4-ester-PFB, (1PZn)4-ester-PFB, and (3PZn)1-ester-PFB, whose dendritic PZn wedges are connected by an ester linkage to the PFB core, were almost comparable to those of the corresponding ether-linked versions. Fluorescence depolarization (P) studies showed much lower P values for star-shaped (7PZn)4PFB and (3PZn)4PFB than cone-shaped (7PZn)1PFB and (3PZn)1PFB, respectively, indicating a highly efficient energy migration among the PZn units in the star-shaped series. Such a morphology-assisted photochemical event is probably responsible for the excellent light-harvesting activity of large (7PZn)4PFB molecules.
Read full abstract