The multi-protein β-catenin destruction complex tightly regulates β-catenin protein levels by shuttling β-catenin to the proteasome. Glycogen synthase kinase 3β (GSK3β), a key serine/threonine kinase in the destruction complex, is responsible for several phosphorylation events that mark β-catenin for ubiquitination and subsequent degradation. Because modulation of both β-catenin and GSK3β activity may have important implications for treating disease, a complete understanding of the mechanisms that regulate the β-catenin/GSK3β interaction is warranted. We screened an arrayed lentivirus library expressing small hairpin RNAs (shRNAs) targeting 5,201 human druggable genes for silencing events that activate a β-catenin pathway reporter (BAR) in synergy with 6-bromoindirubin-3′oxime (BIO), a specific inhibitor of GSK3β. Top screen hits included shRNAs targeting dihydrofolate reductase (DHFR), the target of the anti-inflammatory compound methotrexate. Exposure of cells to BIO plus methotrexate resulted in potent synergistic activation of BAR activity, reduction of β-catenin phosphorylation at GSK3-specific sites, and accumulation of nuclear β-catenin. Furthermore, the observed synergy correlated with inhibitory phosphorylation of GSK3β and was neutralized upon inhibition of phosphatidyl inositol 3-kinase (PI3K). Linking these observations to inflammation, we also observed synergistic inhibition of lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (TNFα, IL-6, and IL-12), and increased production of the anti-inflammatory cytokine IL-10 in peripheral blood mononuclear cells exposed to GSK3 inhibitors and methotrexate. Our data establish DHFR as a novel modulator of β-catenin and GSK3 signaling and raise several implications for clinical use of combined methotrexate and GSK3 inhibitors as treatment for inflammatory disease.
Read full abstract