Accelerated marsh erosion caused by climate change and human activity may have important implications for nutrient cycling and availability. However, how erosion affects phosphorus (P) transformation and microbial function in subtropical coastal marshes remains largely unknown. Here we assessed soil P fractions, availability and the phoD-harboring bacterial community along a marsh erosion gradient (non-eroded, lightly eroded, and heavily eroded). We showed that marsh erosion caused a shift in P fractions, leading to a decrease in P availability and a reduction in concentrations of labile P, moderately labile P, and stable P by 20 %, 9 %, and 17 % respectively. The abundance and diversity of phoD phosphatase genes decreased dramatically along the erosion gradient and were lower at heavily eroded sites than at non-eroded sites. Marsh erosion reshaped phoD gene community composition, and Corallococcus, Amycolatopsis, and Phaeobacter were identified as the dominant phoD-harboring microbes. Notably, marsh erosion reduced the complexity and stability of the phoD-harboring bacterial network, and heavily eroded sites have fewer network edges and nodes than non-eroded sites. The dynamics of soil P fractions, availability, and phoD-harboring bacterial communities driven by marsh erosion are largely shaped by substrate availability and soil properties (e.g., nutrients, pH, electrical conductivity, and moisture). Additionally, strong linkages between P availability and the abundance and diversity of phosphatase genes following erosion, suggest that phosphatase drives P mineralization and dissolution, and erosion weakens the regulation of P transformation by reshaping the phoD phosphatase gene community. Our findings indicate that marsh erosion alters soil P fractions and phoD-harboring bacterial communities, which weakens microbial regulation of P transformation and availability, thereby significantly reducing soil P pools and availability. Our findings broaden understanding of the impacts of coastal erosion on nutrient balance and ecosystem function, offering valuable perspectives that could inform wetland restoration and coastal management strategies.
Read full abstract