It is well known that the parallel cuts of the parallel and perpendicular electric field in electron phase-space holes (electron holes) have bipolar and unipolar structures, respectively. Recently, electron holes in the Earth's plasma sheet have been observed by THEMIS satellites to have detectable fluctuating magnetic field with regular structures. Du et al. (2011) investigated the evolution of a one-dimensional (1D) electron hole with two-dimensional (2D) electromagnetic particle-in-cell (PIC) simulations in weakly magnetized plasma (Omega(epsilon) (x)) is along the x direction. Several 2D electron holes are formed during the nonlinear evolution, where the parallel cuts of E-x and E-y have bipolar and unipolar structures, respectively. Consistent with the results of Du et al. (2011), we found that the current along the z direction is generated by the electric field drift motion of the trapped electrons in the electron holes due to the existence of E-y, which produces the fluctuating magnetic field delta B-x and delta B-y in the electron holes. The parallel cuts of delta Bx and delta B-y in the electron holes have unipolar and bipolar structures, respectively.
Read full abstract