Subdural electrocorticography (ECoG) is a valuable technique for neuroscientific research and for emerging neurotechnological clinical applications. As ECoG grids accommodate increasing numbers of electrodes and higher densities with new manufacturing methods, the question arises at what point the benefit of higher density ECoG is outweighed by spatial oversampling. To clarify the optimal spacing between ECoG electrodes, in the current study we evaluate how ECoG grid density relates to the amount of non-shared neurophysiological information between electrode pairs, focusing on the sensorimotor cortex. We simultaneously recorded high-density (HD, 3mm pitch) and ultra-high-density (UHD, 0.9mm pitch) ECoG, obtained intraoperatively from six participants. We developed a new metric, the normalized differential root mean square (ndRMS), to quantify the information that is not shared between electrode pairs. The ndRMS increases with inter-electrode center-to-center distance up to 15mm, after which it plateaus. We observed differences in ndRMS between frequency bands, which we interpret in terms of oscillations in frequencies below 32Hz with phase differences between pairs, versus (un)correlated signal fluctuations in the frequency range above 64Hz. The finding that UHD recordings yield significantly higher ndRMS than HD recordings is attributed to the amount of tissue sampled by each electrode. These results suggest that ECoG densities with submillimeter electrode distances are likely justified.
Read full abstract