Collar rot caused by Fusarium spp. is a serious threat to the production of Passiflora edulis. However, biocontrol methods are lacking. Trichoderma spp., as the most widely applied biocontrol fungus, can be effective in managing crop diseases. The effectiveness is significantly influenced by environmental factors, such as soil pH. To screen potential biocontrol strains against collar rot of P. edulis, and to explore the effect of pH on the inhibition rate of Trichoderma spp., we selected four Trichoderma species and four Fusarium species isolated from P. edulis planting area in Xishuangbanna. The growth dynamics of different strains under different pH conditions were determined using the mycelial growth rate method. The effect of pH on the growth inhibition of Fusarium spp. by Trichoderma spp. was investigated using the plate confrontation assay. The results showed that the optimal growth pH range was 4-6 for Trichoderma spp. and 7-9 for Fusarium spp. All four Trichoderma strains exhibited significant inhibitory effects on the growth of the four Fusarium strains. T. harzianum showed the most notable inhibition, reaching up to a 72% inhibitory rate. Moreover, pH significantly influenced the inhibitory effect of Trichoderma spp., with variations observed depending on the specific species of Trichoderma spp. and Fusarium spp. Therefore, it is essential to consider the environmental pH impact on the efficacy of biocontrol agents when applying biological control measures in the field, tailored to the specific pathogen and biocontrol agent involved.
Read full abstract