The epoxidation of olefin substrates, in both apolar organic media and under solventless conditions, with aqueous hydrogen peroxide and catalysed by molybdenum complexes has been investigated. The catalysts compounds employed were the oxodiperoxomolybdenum complexes of several pyridine, 2,2′-bipyridine and pyrazole ligands with apolar functions (alkyl chains, alkyl-trimethylsilyl groups and polydimethylsiloxanyl polymer), which showed enhanced solubility in relatively apolar organic media. Both the isolated complexes and in situ preparations were catalytically active. The solubility of the new catalyst complexes appears to facilitate the catalytic activity in these systems, since activity was not observed for the analogous, insoluble complexes of unfunctionalised ligands. In these systems, the oxidant, aqueous hydrogen peroxide, forms a separate phase and the catalyst resides in the organic phase. From a green chemistry and economic perspective the elimination of organic solvents and co-catalysts from a reaction system would present advantages and, consequently, the epoxidation reaction was also investigated under solventless conditions. The 3-hexyl-5-methylpyrazole and 3-hexyl-5-heptylpyrazole complexes were found to show heightened activities, the latter being particularly efficient in these conditions, whilst bipyridines apparently inhibit the epoxidation. In addition, the mechanism of the epoxidation reaction was studied through DFT calculations for the model olefin substrate ethylene with the oxodiperoxomolybdenum complex of 3-hexyl-5-heptylpyrazole. The oxo-transfer reaction occurred by interaction of the ethylene with the peroxo ligand via the spirocyclic transition state proposed by Sharpless.
Read full abstract