Opioid exposure during adolescence, a crucial period of neurodevelopment, has lasting neurological and behavioral consequences and affects the cognitive functions in adulthood. This study investigated the effects of adolescent morphine exposure in spatial learning and memory and synaptic plasticity of the CA1 area of the dorsal hippocampus.Adolescent Wistar rats received increasing doses of morphine for 1, 5, and 10 days. Acute morphine group was injected 2.5 mg/kg morphine for 1 day, subchronic morphine group for 5 days, with an increasing dose of 2.5 mg/kg and reached to the dose of 12.5 mg/kg and chronic morphine group for 10 days that began with an increasing dose of 2.5 mg/kg and reached to the dose of 25 mg/kg. Then after 25 days and reaching adulthood, spatial learning and memory were evaluated via the Morris water maze (MWM) test. Moreover, we test the electrophysiological properties of dorsal hippocampal plasticity in adult rats by in vitro field potential recordings.Subchronic and chronic adolescent morphine exposure impaired spatial learning and memory in the MWM test. Baseline synaptic responses in the chronic morphine group were increased and long-term potentiation (LTP) impaired in the CA1 area in subchronic and chronic morphine groups. In adulthood, the slope of the field excitatory postsynaptic potential (fEPSP) required to elicit a half-maximal population spike (PS) amplitude was significantly larger in subchronic and chronic adolescent morphine exposure compared to the saline group. Therefore, subchronic and chronic adolescent morphine exposure altered synaptic transmission and plasticity in addition to learning and memory.Long-term morphine exposure during adolescence can interfere with neurodevelopment, making a persistent impression on plasticity and cognitive capability in adulthood.
Read full abstract