Mid-infrared (MIR) light sources have gained significant importance across various applications in spectroscopy, sensing, astronomy, communications and medical surgery. The diverse spectral characteristics of rare earth ions, particularly lanthanide ions, stemming from their distinctive 4f intershell transitions, offer a multitude of potential transitions spanning the UV-visible-infrared spectrum. Despite recent advancements in MIR gain luminescence, the investigation of tunable MIR luminescence mechanisms remains a major technical challenge. Herein, an effective mechanism to modulate the local crystal field of rare earth ions by altering its crystal structure has been revealed, resulting in tunable broad-spectrum emission in the MIR luminescence range of 2800-3000 nm and multi-peak emission in the near-infrared band of Ho3+. Notably, the local crystal field of Ho3+ is adjusted by manipulating the lattice symmetry of CsPb1-xHoxBr3 perovskite through the incorporation of fluoride glass reticulation to control the crystal size of the perovskite and thereby modify the lattice symmetry of CsPb1-xHoxBr3 perovskite. The energy level transition of Ho3+ is influenced by adjusting the crystal field asymmetry, resulting in the splitting of the 5I6 energy level depending on the crystal field. This cleavage affects the transitions from the 5I5 level to 5I6 at 1480 nm and from 5I6 to 5I7 at 2880 nm. As 5I6 acts as the common upper level for the two emission peaks, the infrared peaks at 1480 nm and 2880 nm widen and develop into a dual-peak emission phenomenon. The infrared luminescence produced aligns closely with the distinctive infrared absorption peaks of carbon dioxide, leading to the development of a convenient, high-precision device for monitoring of CO2 concentration in hydrogen energy in real time. These findings are anticipated to pave the way for extensive utilization of novel tunable MIR luminescence.
Read full abstract