Utilizing depleted gas reservoirs for gas storage is the most efficient method. However, the impact of multi-cycle injection-production and water invasion on rock properties and gas-water seepage dynamics remains unclear. This study investigates such reservoirs' multi-cycle stress sensitivity and gas-water displacement behavior. Results show that multi-cycle injection-production and water invasion increase the stress sensitivity of the gas and damage gas storage space and seepage channels. This study also proposed a new unsteady gas-water relative permeability testing method and a prediction model based on in-situ X-ray CT scanning, improving measurement accuracy by 30%. The results found that the gas's relative permeability is directly proportional to the injection rate and inversely proportional to the initial gas saturation. A gas-water relative permeability model was established, demonstrating that gas-water interference intensifies as the number of cycles increases. In a gas-water transition zone in depleted gas reservoirs, gas relative permeability damage reaches 81%, reducing the movable pore space and impacting injection-production rates and capacity. This study offers valuable recommendations for optimizing production and dynamic prediction in depleted gas reservoirs, contributing to clean energy applications.
Read full abstract