In recent research activities, shake-table tests were revealed to be useful to investigate the seismic behavior of cold-formed steel (CFS) buildings. However, testing full-scale buildings or reduced-scale prototypes is not always possible; indeed, predicting tools and numerical models could help designers to evaluate earthquake response. For this reason, numerical modelling of two strap-braced prototype buildings, recently tested on shake-table at University of Naples Federico II in cooperation with Lamieredil S.p.A. company, was developed. The models were validated trough the comparison between experimental and numerical results, in term of dynamic properties (fundamental period of vibration and modal shapes), peak roof drift ratios and peak inter-story drift ratios. Although dynamic properties of mock-ups were captured with accuracy by the developed models, the comparison highlighted the need to consider accumulation of damage and rocking phenomenon in the modelling to capture with good accuracy the seismic behavior of CFS strap-braced building, subjected to high intensity records.
Read full abstract