The intensity-duration-frequency (IDF) curves are the most common form of design rainfall data used for peak discharge estimation. Thus, the IDF curve needs to be improved with the expectation that rainfall intensity and frequency have increased as a result of climate change. The main purpose of this study was to investigate the changes of IDF curves considering the climate change impacts on Hulu Terengganu. The climate projection from MRI-ESM2-0, CMCC-CM2-SR5, and GFDL-ESM4 under 3 different scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) were used to provide the climate changes pattern in the future year (∆2050). In order to downscale the climate projection, the statistical downscaling method (SD-LS) was employed to correct the biases of these three GCMs. The IDF curves for the return periods of 2, 5, 10, 20, 50, 100, and 200 year were then developed based on the maximum rainfall intensity that were projected by the SD-LS model. The results clearly indicated that there are possibilities for increasing patterns in the projected annual and monthly rainfall for both time periods compared to historical data. Thus, the future extreme rainfall events for various durations with different return periods are all likely to increase over time. The largest potential increase is predicted at Sg. Gawi (+2.0% to +86.0%) based on the different return periods and rainfall durations. It could change the pattern of IDF curve that been developed based on projected rainfall by various SSPs. The developed IDF curves shows higher rainfall intensities in a shorter duration under the same return periods. Therefore, comprehensive action must be taken immediately to regulate and manage the effects of climate change.
Read full abstract