The eastern Tibetan Plateau geothermal belt in the southwest of China hosts a number of hot springs with a wide range of temperature and hydrogeochemical conditions, which may harbor different niches for the distribution of microbial communities. In this study, we investigated hydrochemical characteristics and microbial community composition in 16 hot springs with a temperature range of 34.6 to 88.2 °C within and across three typical hydrothermal fields (Kangding, Litang, and Batang). According to aquifer lithologic and tectonic differences, the hydrochemical compositions of hot springs displayed an apparent regional-specific pattern with distinct distributions of major and trace elements (e.g., Ca2+, Mg2+, F−/B) and were primarily formed by water-rock interaction across the three hydrothermal fields. Nonetheless, microbial communities significantly assembled with the temperature rather than the geographic locations with distinct hydrogeological features. Low temperature (<45 °C), moderate temperature (55–70 °C) and high temperature (>70 °C) groups were identified based on their community compositions. Proteobacteria and Nitrospirae were the predominant phyla in low-temperature hot springs, while in moderate to high-temperature springs they were mainly composed of Aquificae, Deinococcus-Thermus, Thermodesulfobacteria, Thermotogae and Cyanobacteria. Variation partition analysis suggested a higher explanation of temperature (29.6%) than spatial variable (1.8%) and other geochemical variables (2.5%) on the microbial distribution. Microbial co-occurrence network showed >80% negative associations hinting a low co-existence pattern and highlighted the driving force of temperature as well as F− or total organic carbon (TOC) for microbial interactions. Microbial dissimilarity displayed significant linear correlations with environmental (temperature) and geographic distance in Batang but only with temperature in Kangding area, which might be attributed to the regional-specific hydrogeochemistry. This study may help us to better understand the distribution of the microbial community in hot spring across different hydrothermal fields.
Read full abstract