ObjectiveTo investigate the causal relationships between plasma metabolites and osteoporosis via Mendelian randomization (MR) analysis. MethodsBidirectional MR was used to analyze pooled data from different genome-wide association studies (GWAS). The causal effect of plasma metabolites on osteoporosis was estimated using the inverse variance weighted method, intersections of statistically significant metabolites obtained from different sources of osteoporosis-related GWAS aggregated data was determined, and then sensitivity analysis was performed on these metabolites. Heterogeneity between single nucleotide polymorphisms was evaluated by Cochran's Q test. Horizontal pleiotropy was assessed through the application of the MR-Egger intercept method and the MRPRESSO method. The causal effect of osteoporosis on plasma metabolites was also evaluated using the inverse variance weighted method. Additionally, pathway analysis was conducted to identify potential metabolic pathways involved in the regulation of osteoporosis. ResultsPrimary analysis and sensitivity analysis showed that 77 and 61 plasma metabolites had a causal relationship with osteoporosis from the GWAS data in the GCST90038656 and GCST90044600 datasets, respectively. Five common metabolites were identified via intersection. X-13684 levels and the glucose-to-maltose ratio were negatively associated with osteoporosis, whereas glycoursodeoxycholate levels and arachidoylcarnitine (C20) levels were positively associated with osteoporosis (all P < 0.05). The relationship between X-11299 levels and osteoporosis showed contradictory results (all P < 0.05). Pathway analysis indicated that glycine, serine, and threonine metabolism, valine, leucine, and isoleucine biosynthesis, galactose metabolism, arginine biosynthesis, and starch and sucrose metabolism pathways were participated in the development of osteoporosis. ConclusionWe found a causal relationship between plasma metabolites and osteoporosis. These results offer novel perspectives with important implications for targeted metabolite-focused interventions in the management of osteoporosis.
Read full abstract