AbstractSea urchins are widely considered to be the major grazers in temperate subtidal systems, with herbivorous fish being browsers of minor importance. This paper reviews spatial and temporal patterns in these herbivores on rocky reels in temperate Australasia, with the aim of assessing their relative impacts on patch structure and dynamics. Herbivorous fishes are widespread and make up a significant numerical component the reel fish fauna. Sea urchins are also abundant, but not all geographic locations support actively grazing species.Both fish and sea urchins exhibit distinct patterns of distribution among depth strata. Within depth strata, all herbivores are restricted to (sea urchins) or forage preferentially in (fish) particular habitat patches, causing a mosaic of different feeding activities. These patches are either related to specific features of the habitat (e.g. Kelp patches, topography) or behavioural interactions. Foraging by sea urchins and demersal‐nesting damselfishes is intense and persistent, whereas in the kelp‐feeding fish Odax cyanomelas, foraging reaches greatest intensity at predictable locations during a few months of every year.Many fish and sea urchins consume some algae in preference to others. However, feeding preferences may determine the nature of the impact only in fishes. For sea urchins, preference may occasionally determine the order in which algae are consumed, but at high densities they consume all available macroalgae.Impacts of both types of herbivore on the abundance of algae have been recorded. Some sea urchins (e.g. Evechinus chloroticus, Centrostephanus rodgersii) appear to severely modify biogenic habitat structure by maintaining ‘barrens’ (areas devoid of macroalgae) over long periods. In contrast to this, the effects of fishes may be more transitory (e.g. seasonal impact of Odax cyanomelas on brown algae) or occur at smaller spatial scales (e.g. nest sites maintained by male Parma victoriae) Herbivorous and other fishes appear to respond to spatial patterns in algal distributions, rallier than having it major impact upon them. The relative effects of fish and sea urchins on the long‐term dynamics of kelp forests are unknown, hut temporal patterns in herbivore abundance and behaviour, and algal demography arc urgent targets for research.
Read full abstract